ALGORITMA KRUSKAL MENENTUKAN LINTASAN TERPENDEK EFEKTIF CALL SALESMAN
Abstract
The management of distribution visits is a crucial problem experienced by goods product companies (distributors). There needs to be an optimal pattern to determine the shortest route in the goods distribution process. The data obtained are in the form of shop names, distances, and travel routes at PT BSP. The data obtained are then represented in the form of an image and look for the minimum spanning tree of the distribution line. From the calculation of the distance salesmen usually cover a distance of 16,660 m, while using the Kruskal algorithm it is obtained 14,110 m. So there is a savings in the distance obtained along the 2560 m. This study shows that using the Kruskal algorithm is more optimal because the steps taken are more precisely applied in the salesmen's journey problem.
References
Hardianto, H. (2015). PENENTUAN PENURUNAN TEGANGAN BERDASARKAN MINIMUM SPANNING TREE PADA JARINGAN LISTRIK DISTRIBUSI PRIMER. Emitor: Jurnal Teknik Elektro, 15(1), 1–10. https://doi.org/10.23917/emitor.v15i1.1758
Hayu, W., & Marwan Sam, dan. (2017). PEMBENTUKAN POHON MERENTANG MINIMUM DENGAN ALGORIT MA KRUSKAL. In Jurnal Scientific Pinisi (Vol. 3, Issue 2). https://doi.org/10.26858/IJFS.V3I2.4781
Ilmu, G. (2005). Matematika Diskrit.
Kodirun. (2012). PERBANDINGAN ALGORTIMA PRIM DAN KRUSKAL DALAM MENENTUKAN POHON RENTANG MINIMUM. In JURNAL ILMIAH MATEMATIKA DAN TERAPAN (Vol. 6, Issue 2). http://jurnal.untad.ac.id/jurnal/index.php/JIMT/article/view/22
Prasetiyo, A., & Mei, D. (2018). PENERAPAN ALGORITMA KRUSKAL DAN ALGORITMA SOLLIN PADA PENDISTRIBUSIAN AIR PDAM TIRTA AJI CABANG WONOSOBO DAN APLIKASINYA MENGGUNAKAN MICROSOFT VISUAL BASIC 6.0. Unnes Journal of Mathematics, 7(2), 155–164. https://doi.org/10.15294/ujm.v7i2.14238
Rahmawati, A. (2015). MINIMUM SPANNING TREE PADA JARINGAN PENDISTRIBUSIAN ANEKA KRIPIK ABDI MULYA DI KABUPATEN GROBOGAN. Unnes Journal of Mathematics, 4(2). https://doi.org/10.15294/ujm.v4i2.10242
Rizki, S. (2012). PENERAPAN TEORI GRAF UNTUK MENYELESAIKAN MASALAH MINIMUM SPANNING TREE (MST) MENGGUNAKAN ALGORITMA KRUSKAL. AKSIOMA Journal of Mathematics Education, 1(2). https://doi.org/10.24127/ajpm.v1i2.68
Copyright (c) 2020 Priyono Priyono
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Hak cipta dari semua naskah yang masuk dan dipublikasikan oleh FUSIOMA (Fundamental Scientific Journal of Mathematics) menjadi milik penulis. Program studi Matematika UNU Purwokerto selaku penerbit dari jurnal ini berhak mengerbitkan dan menyebarluaskan semua artikel di jurnal ini. Penulis diwajibkan mengisi lembar pernyataan keaslian tulisan (formulirnya dapat diunduh di sini) dan kemudian mengirimkan formulir yang telah diisi ke fusioma.psmat@gmail.com